الاسم: الشعبة:

المدة: ثلاث ساعات

مذاكرة الفصل الأول الدوام الصباحي الرياضيـــات الثالث الثانوي العلمي (٢٠٢٠ - ٢٠٢١)

(١٠ درجة لكل سؤال)

أولاً: أجب عن كل الأسئلة الأربعة الآتية:

(0) عند
$$f(x) = \frac{\sin 5x}{x + \sin x}$$
 عند (0).

.(
$$a = 2$$
) عند $f(x) = \frac{\sin(x-2)}{x^2-4}$ عند (2).

السؤال الثاني:

المستقيم المار من A و يقبل $\vec{u}(4,1,-2)$ شعاع توجيه له.

المستقيم المار من B و يقبل $\vec{v}(3,1,-1)$ شعاع توجيه له، و المطلوب:

- أثبت أنّ d , d' متقاطعان . $oldsymbol{0}$
- عيّن إحداثيات D التي تجعل ABCD متوازي أضلاع $oldsymbol{2}$

السؤال الثالث: أثبت أنّ العدد العقدي ($z_1 = -2i$) هو جذر للمعادلة :

 (z_2) ثمّ أوجد الجذر الآخر $z^2 - (1-3i)z - 2 - 2i = 0$

 $u_n = \frac{3 n}{2n+1}$, $v_n = \frac{n!}{n^2}$: ادرس اطراد کل من المتتالیتین المتالیتین ادرس

(۲۰ درجة لكل تمرين)

ثَانِياً: حل التمارين الأربعة الآتية:

التمرين الأول:

بفرض C خط بياني لتابع f معرّف على \mathbb{R} وفق \mathbb{R} وفق و المطلوب:

- $(-\infty)$ و $(+\infty)$ من $(+\infty)$ و $(-\infty)$
- $+\infty$ عند C عند Δ اكتب التركيب Δ الخط Δ بالصيغة القانونية، ثم استنج وجود مستقيم مقارب Δ للخط Δ عند Δ
 - ، و اكتب معادلته.
 - $oldsymbol{\Delta}$. ادرس وضع C بالنسبة لـ $oldsymbol{\Delta}$

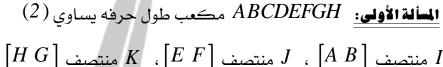
التمرين الثاني:

 $z=(\frac{-4+4i}{\sqrt{2}})(\sqrt{3}-3i)$ يكن العدد العقدي $z=(\frac{-4+4i}{\sqrt{2}})(\sqrt{3}-3i)$ و المطلوب

- قبت أن $|z|=8\sqrt{3}$. و أنّ $|z|=8\sqrt{3}$. و أنّ $|z|=8\sqrt{3}$ أثبت أن $|z|=8\sqrt{3}$

التمرين الثالث:

التكن المتتالية $u_{n+1}=2u_n-3$ ، $u_0=2$ عرفة وفق : $u_{n+1}=2u_n-3$ ، و المطلوب:


- n . أثبت بالتدريج أن $u_n = 3 2^n$ أياً كان العدد الطبيعى $\mathbf{0}$
- ي بفرض $(v_n)_{n>0}$ معرفة وفق $u_n-3=u_n-3$ أثبت أنها هندسية و عيّن أساسها.
 - . $S = v_2 + v_4 + v_6 + \dots + v_{20}$ احسب المجموع: 3

التمرين الرابع:

 $z \neq 3i$ عيّن مجموعة الأعداد العقدية التي يكون من أجلها العدد $A = \frac{z+3i}{z-3i}$ حقيقياً ، حيث

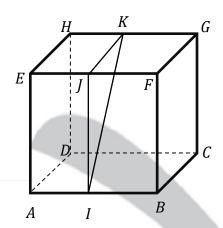
(۱۰۰ درجة لكل مسألة)

ثالثاً: حل المسألتين الآتيتين:

 $[H \ G]$ منتصف $[A \ B]$ منتصف $[A \ B]$ منتصف $[A \ B]$ منتصف $[A \ A \ B]$ ولنختر المعلم المتجانس: $[A \ A \ B]$ بالمعلم المتجانس: $[A \ B]$ ولنختر المعلم المتجانس: $[A \ B]$

- عين إحداثيات النقاط التي تمثل رؤوس المكعب K,J,I وإحداثيات النقاط
- أثبت أن الأشعة: \overrightarrow{BG} , \overrightarrow{IJ} , \overrightarrow{BG} مرتبطة خطياً . $m{2}$


 $(I\ J\ K)$ وماذا تستنتج بالنسبة للمستقيم $(B\ G)$ مع المستوي


$$\frac{1}{2} \left(\overrightarrow{B} \overrightarrow{E} + \overrightarrow{D} \overrightarrow{H} \right) = \overrightarrow{C} \overrightarrow{K}$$
 . أثبت صحة المساواة الشعاعية:

I=igl]-1 , $+\infty$ [المعرف على المجال الميانية: ليكن التابع f المعرف على المجال المعانية الثانية المعانية المعانية

وفق: $\frac{x}{I+x}$ وفق وفق: $f(x) = \frac{x}{I+x}$

- $oldsymbol{C}$. ابحث عن كل مقارب أفقى أو شاقولى لـ $oldsymbol{C}$
- . x>A أياً كان $f\left(x
 ight)\in \left]$. أوجد عدداً حقيقياً A يحقق أن A
 - $u_{n+1}=rac{u_n}{1+u_n}$ ، $u_0=1$: معرفة وفق $\left(u_n\right)_{n\geq 0}$ معرفة وفق . $oldsymbol{3}$
 - n . n أياً أياً أياً العدد الطبيعي $u_n > 0$
- . بفرض $(v_n)_{n\geq 0}$ متتالية معرفة وفق $u_n=\frac{1}{u_n}$ ، أثبت أنها متتالية حسابية ، عيّن أساسها.
 - . u_n عبارة v_n بدلالة n ، ثم احسب عبارة v_n عبارة . 3

